Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?

نویسندگان

  • Helena Téllez Lozano
  • John Druce
  • Samuel J Cooper
  • John A Kilner
چکیده

18O and 2H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo2O5+δ (PBCO) in flowing air containing 200 mbar of 2H216O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity (~1.3 × 10-11 cm2s-1) at this temperature and that the presence of water (2H216O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of ~3. The 2H distribution, as inferred from the 2H216O- SIMS signal, shows an apparent depth profile which could be interpreted as 2H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Materials design for perovskite SOFC cathodes

This article focuses on perovskite materials for application as cathode material in solid oxide fuel cells. In order to develop new promising materials it is helpful to classify already known perovskite materials according to their properties and to identify certain tendencies. Thereby, composition-dependent structural data and materials properties are considered. Structural data under consider...

متن کامل

Dense Ceramic Membranes for Hydrogen Separation

In the 1980s and 1990s, the development of oxygen ion conductors for solid electrolytes, as well as mixed oxygen–electron conductors as electrodes for solid oxide fuel cells, brought scientists to envision a possibility of mixed-conducting oxygenpermeable ceramic membranes. Today this field is well established, and ceramic membranes are close to implementation in processes for oxygen extraction...

متن کامل

Proton Content and Nature in Perovskite Ceramic Membranes for Medium Temperature Fuel Cells and Electrolysers

Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex p...

متن کامل

Interface Analysis of Complex Oxide Ceramics in Electrolyte Supported Solid Oxide Fuel Cell

Solid Oxide Fuel Cells (SOFC) offer electrochemically generated sources of electricity using oxygen ion transport at elevated temperatures. Analysis of materials used in SOFC using electron microscopy provides insights of foreseeable chemical reactions that govern the performance of the fuel cell. Materials used in SOFC can be divided into four categories; anode, cathode, electrolyte and interc...

متن کامل

Pretransition Phenomena in Fast-Proton Conductors

The proton transfer along hydrogen-bonded channels has been recognized to be responsible for the charge conduction in many organic and biological systems [1–3]. Proton conducting solids are also of interest because of their potential use in fuel cells [4, 5]. Current interest to fast-proton conductors needs their synthesis, parameterization, and especially understanding of charge transport mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017